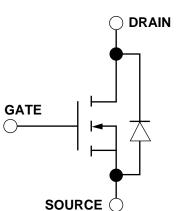

POWER MOSFET IN HERMETIC ISOLATED TO-254AA PACKAGE

600V & 550V, 11 Amp, N-Channel MOSFET In Hermetic Metal Package

FEATURES

- Isolated Hermetic Metal Package
- Fast Switching
- Low R_{DS(on)}
- Available Screened To MIL-S-19500, TX, TXV And S
- Ceramic Feedthroughs Also Available

DESCRIPTION


This series of hermetically packaged products feature the latest advanced MOSFET and packaging technology. The device breakdown ratings provide a substantial voltage margin for stringent applications such as 270 VDC aircraft power and/or rectified 230 VAC power (line operation). They are ideally suited for Military requirements where small size, high performance and high reliability are required, and in applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

MAXIMUM RATINGS

PART NUMBER	V _{DS}	R _{DS(on)}	I _{D(MAX)}
OM11N60	600V	.50	11A
OM11N55	550V	.44	11A

3.1

Omnirel 🖸

SCHEMATIC

Omnirel 🖾

ELECTRICAL CHARACTERISTICS: T_{C} = 25° unless otherwise noted STATIC P/N OM11N60SA

Param	eter	Min.	Тур.	Max.	Units	Test Conditions
BV_{DSS}	Drain-Source Breakdown	600			V	$V_{GS} = 0,$
	Voltage					$I_D = 250 \text{ mA}$
$V_{\text{GS(th)}}$	Gate-Threshold Voltage	2.0		4.0	V	$V_{\text{DS}} = V_{\text{GS}}, I_{\text{D}} = 250 \text{ mA}$
I_{GSS}	Gate-Body Leakage			± 100	nA	$V_{GS} = \pm 20 \text{ V}$
I _{DSS}	Zero Gate Voltage Drain		0.1	0.25	mA	V_{DS} = Max. Rat., V_{GS} = 0
	Current		0.2	1.0	mA	$V_{\text{DS}} = 0.8$ Max. Rat., $V_{\text{GS}} = 0$,
						T _c = 125° C
I _{D(on)}	On-State Drain Current ¹	11.0			A	$V_{\text{DS}} > I_{\text{D(on)}} \times R_{\text{DS(on)}}, V_{\text{GS}} = 10 \text{ V}$
V _{DS(on)}	Static Drain-Source On-State			3.1	V	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$
	Voltage ¹					
R _{DS(on)}	Static Drain-Source On-State		.47	.50		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$
	Resistance ¹					
R _{DS(on)}	Static Drain-Source On-State			1.0		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A},$
	Resistance ¹					T _c = 125 C

ELECTRICAL CHARACTERISTICS: T_c = 25° unless otherwise noted STATIC P/N OM11N55SA

Param	eter	Min.	Тур.	Max.	Units	Test Conditions
BV_{DSS}	Drain-Source Breakdown	550			V	$V_{GS} = 0,$
	Voltage					I _D = 250 mA
$V_{\text{GS(th)}}$	Gate-Threshold Voltage	2.0		4.0	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=250\ {\rm mA}$
I_{GSSF}	Gate-Body Leakage Forward			±100	nA	$V_{GS} = \pm 20 \text{ V}$
I _{DSS}	Zero Gate Voltage Drain		0.1	0.25	mA	V_{DS} = Max. Rat., V_{GS} = 0
	Current		0.2	1.0	mA	$V_{DS} = 0.8$ Max. Rat., $V_{GS} = 0$
						T _c = 125° C
I _{D(on)}	On-State Drain Current ¹	11.0			A	$V_{\rm DS}$ > $I_{\rm D(on)}$ x $R_{\rm DS(on)}$, $V_{\rm GS}$ = 10 \
$V_{\text{DS(on)}}$	Static Drain-Source On-State			3.3	V	$V_{GS} = 10 \text{ V}, I_{D} = 5.5 \text{ A}$
	Voltage ¹					
$R_{\text{DS(on)}}$	Static Drain-Source On-State		.37	.44		$V_{GS} = 10 \text{ V}, I_{D} = 5.5 \text{ A}$
	Resistance ¹					
$R_{\text{DS(on)}}$	Static Drain-Source On-State			.88		$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A},$
	Resistance ¹					T _c = 125 C

DYNAMIC

g _{fs}	Forward Transductance ¹	5.0		S(M)	V_{DS} 2 $V_{DS(on)}$, $I_D = 5.5$ A
C _{iss}	Input Capacitance		3000	pF	$V_{GS} = 0$
C _{oss}	Output Capacitance		440	pF	V _{DS} = 25 V
C _{rss}	Reverse Transfer Capacitance		220	pF	f = 1 MHz
T _{d(on)}	Turn-On Delay Time		55	ns	V _{DD} = 210 V, I _D @ 7.0 A
t,	Rise Time		75	ns	$R_{g} = 5 W, R_{L} = 30 W$
T _{d(off)}	Turn-Off Delay Time		225	ns	(MOSFET) switching times are essentially independent of
t _f	Fall Time		135	ns	operating temperature.

DYNAMIC

g _{fs}	Forward Transductance ¹	5.0		S(M)	V_{DS} 2 $V_{DS(on)}$, I_{D} = 5.5 A
C _{iss}	Input Capacitance		3000	pF	$V_{GS} = 0$
C _{oss}	Output Capacitance		440	pF	V _{DS} = 25 V
C _{rss}	Reverse Transfer Capacitance		220	pF	f = 1 MHz
T _{d(on)}	Turn-On Delay Time		55	ns	V _{DD} = 210 V, I _D @ 7.0 A
t,	Rise Time		75	ns	$R_g = 5 W, R_L = 30 W$
T _{d(off)}	Turn-Off Delay Time		225	ns	(MOSFET) switching times are essentially independent of
t _f	Fall Time		135	ns	operating temperature.

-11 A

- 52 A

-1.4 V

ns

700

Modified MOSPOWER symbol showing

 $T_c = 25 C, I_s = -11 A, V_{gs} = 0$

the integral P-N Junction rectifier.

 $T_J = 150 \text{ C}, I_F = I_S,$ $dI_F/ds = 100 \text{ A/ms}$

BODY-DRAIN DIODE RATINGS AND CHARACTERISTICS

BODY-DRAIN DIODE RATINGS AND CHARACTERISTICS

Is	Continuous Source Current		- 11	А	Modified MOSPOWER	Is	Continuous Source Current
	(Body Diode)				symbol showing		(Body Diode)
I _{SM}	Source Current ¹		- 52	А	the integral P-N	I _{SM}	Source Current ¹
	(Body Diode)				Junction rectifier.		(Body Diode)
V _{SD}	Diode Forward Voltage ¹		- 1.4	V	$T_{c} = 25 \text{ C}, I_{s} = -11 \text{ A}, V_{gs} = 0$	V _{SD}	Diode Forward Voltage ¹
t _{rr}	Reverse Recovery Time	700		ns	$T_{J} = 150 C, I_{F} = I_{S},$	t _{rr}	Reverse Recovery Time
					dI _F /ds = 100 A/ms		

ယ

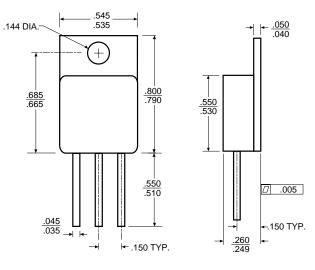
1 Pulse Test: Pulse Width 300msec, Duty Cycle 2%.

1 Pulse Test: Pulse Width 300msec, Duty Cycle 2%.

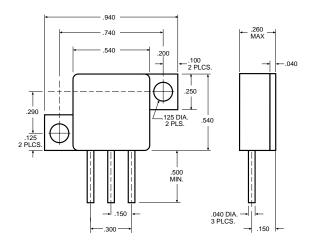
OM11N60SA - OM11N55SA

Symbol	Parameter	OM11N60	OM11N55	Units
V_{DGR}	Drain Source Voltage	600	550	V
V _{DS}	Drain Gate Voltage (R_{GS} = 1.0 M)	600	550	V
I _D	Continuous Drain Current @ $T_c = 25^{\circ}C$	11	11	А
I _D	Continuous Drain Current @ T _C = 100°C	7.2	7.2	А
I _{DM}	Pulsed Drain Current ¹	52	52	А
P _D	Max. Power Dissipation @ $T_c = 25^{\circ}C$	125	125	W
P _D	Max. Power Dissipation @ $T_c = 100^{\circ}C$	50	50	W
	Linear Derating Factor Jct. to Case	1.0	1.0	W/°C
	Linear Derating Factor Jct. to Ambient	.020	.020	W/°C
T _J , T _{stg}	Operating and Storage Temp. Range	-55 to	5 150	°C
	Lead Temperature (1/16" from case for 10 sec.)	300	300	°C

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)


1 Pulse Test: Pulse width 300 µsec. Duty Cycle 2%.

THERMAL RESISTANCE (Maximum at $T_A = 25^{\circ}C$)


R _{thJC}	Junction-to-Case	1.0	1.0	°C/W
R _{thJA}	Junction-to-Ambient (Free Air Operation)	50	50	°C/W

OM11N60SA - OM11N55SA

MECHANICAL OUTLINES

Omnirel AZ Package

For Z-Pack configuration, add letter "Z" to part number, Example - OMXXXXSAZ

Standard Products are supplied with glass feedthroughs, for ceramic feedthroughs, add letter "<u>C</u>" to part number, Example - OMXXXX<u>C</u>SA

3.1